Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization.
نویسندگان
چکیده
The advent of genome-scale models of metabolism has laid the foundation for the development of computational procedures for suggesting genetic manipulations that lead to overproduction. In this work, the computational OptKnock framework is introduced for suggesting gene deletion strategies leading to the overproduction of chemicals or biochemicals in E. coli. This is accomplished by ensuring that a drain towards growth resources (i.e., carbon, redox potential, and energy) must be accompanied, due to stoichiometry, by the production of a desired product. Computational results for gene deletions for succinate, lactate, and 1,3-propanediol (PDO) production are in good agreement with mutant strains published in the literature. While some of the suggested deletion strategies are straightforward and involve eliminating competing reaction pathways, many others suggest complex and nonintuitive mechanisms of compensating for the removed functionalities. Finally, the OptKnock procedure, by coupling biomass formation with chemical production, hints at a growth selection/adaptation system for indirectly evolving overproducing mutants.
منابع مشابه
Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock.
In this study, we modify and extend the bilevel optimization framework OptKnock for identifying gene knockout strategies in the Escherichia coli metabolic network, leading to the overproduction of representative amino acids and key precursors for all five families. These strategies span not only the central metabolic network genes but also the amino acid biosynthetic and degradation pathways. I...
متن کاملIs OptKnock a reliable strategy for desirable mutants?
Flux balance analysis (FBA) has enabled the development of computational methods for predicting optimal knockout strategies to genetically engineer microbial strains for desirable behavior, such as optimal biochemical overproduction for alternative energy sources. Many of these existing methods are based on bi-level optimization formulations to maximize the desired biochemical overproduction at...
متن کاملA hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains.
Microbial strain optimization focuses on improving technological properties of the strain of microorganisms. However, the complexities of the metabolic networks, which lead to data ambiguity, often cause genetic modification on the desirable phenotypes difficult to predict. Furthermore, vast number of reactions in cellular metabolism lead to the combinatorial problem in obtaining optimal gene d...
متن کاملGene Knockout Identification for Metabolite Production Improvement Using a Hybrid of Genetic Ant Colony Optimization and Flux Balance Analysis
The increasing demand of biochemical supply for various industries has spurred the development of metabolic engineering to find the optimal design of the microbial cell factories. Traditional method of chemical synthesis using the natural producer leads to the production far below their theoretical maximums. Gene knockout strategy is then introduced to improve the metabolite production. To aid ...
متن کاملDifferential Bees Flux Balance Analysis with OptKnock for In Silico Microbial Strains Optimization
Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biotechnology and bioengineering
دوره 84 6 شماره
صفحات -
تاریخ انتشار 2003